Bioimpedance:
a non-invasive technology to understand what weight does not say.

Bioimpedance

Bioimpedance

How do BIA and BIS evaluate body composition?

Body composition corresponds to the distribution between fat mass, muscle mass, and water in the body, providing a much more relevant evaluation than weight alone or BMI.

Bioimpedance (Bioelectrical Impedance Analysis, BIA) is a non-invasive and painless method for analyzing these compartments. It relies on how body tissues react to an alternating electrical signal of very low intensity, imperceptible to the individual.

This response depends notably on tissue hydration and on the properties of cell membranes. By integrating these parameters into validated prediction models, BIA allows for the estimation of fat-free mass and its associated compartments, notably muscle mass and total water.

Bioelectrical Impedance Spectroscopy (BIS) goes even further: it measures the body’s electrical response over a wide spectrum of frequencies, allowing for a finer characterization of fluid compartments and cellular properties (such as membrane capacitance and characteristic frequency). This spectroscopic approach improves the physiological robustness of the model and provides direct quality control thanks to the analysis of signal coherence across the entire spectrum.

Thanks to their simplicity of use and the speed of obtaining results, BIA and BIS provide essential information on nutritional and hydration status, constituting reliable tools for clinical follow-up and health monitoring.

BIA is strongly correlated with total body water, which allows for the precise estimation of fat-free mass using predictive equations. However, since adipose tissue is very poorly linked to the measured parameters, its direct estimation is less reliable. Thus, there is a scientific consensus to calculate fat mass by difference, by subtracting fat-free mass from total weight, in accordance with the body compartment model.

Factors influencing the accuracy of BIA measurements

The accuracy of a BIA measurement depends on several technical and physiological parameters. Among the most determining are the quality of contact between the electrodes and the skin, the body position during the measurement, and the connection mode used by the device.

Contact points

Hand-foot analysis for a consistent whole body measurement.

Spectroscopy

54 measurement points, instant quality control.

Multi-algorithms

No simplified deduction: each compartment is calculated independently.

Clinical reference

Tetrapolar method and algorithms validated by literature.

Importance of contact points

The contact points determine the signal path in the body and therefore the compartments actually traversed. Depending on the combination used (hand-hand, hand-foot, foot-foot), the measurement provides information on a different body volume.

Foot - Foot
  • Measurement limited to the lower body
  • Trunk and upper body estimated, not measured
  • Variable accuracy depending on sex and morphotype
Hand - Foot
  • Measures the whole body: limbs + trunk
  • Complete and more reliable analysis
  • Preferred method in clinical practice
Hand - Hand
  • Measurement limited to the upper body
  • The lower body is estimated, not measured
  • Accuracy dependent on morphotype and sex
Measurement-hand-foot-icon
Aminogram devices rely on the hand-foot measurement, the reference method for complete and reliable body analysis, recommended by ESPEN and the Haute Autorité de Santé.

Measurement positions

The lying position

Homogeneous distribution of fluids after 15–20 min

  • Excellent precision
  • Longer stabilization time
The sitting position

Stable, fast, and reproducible position

  • Practical in consultation
  • Comfortable for the patient
The standing position

Distribution of fluids towards the lower body

  • Quick to implement
  • Poorer water homogeneity

Aminogram devices allow for measurement in the sitting or lying position, with or without cable, in order to combine simplicity of use and clinical precision.

The sitting position, easy to implement, is perfectly adapted to routine consultations. The lying position, on the other hand, offers an ideal environment for the most fragile populations and for evaluations requiring optimal fluid stabilization.

Mesure directe et indirecte

Pour réaliser une mesure, deux modes de connexion peuvent être utilisés :

Mesure indirecte
(avec câbles)
Des câbles relient la main et le pied au dispositif
  • : positionnement flexible, compatible avec les mesures assise ou allongée.
  • : la résistance des câbles peut légèrement influencer la mesure.
Mesure directe
(sans câbles)
La main et le pied sont en contact direct avec les électrodes intégrées.
  • : installation rapide, mesures stables non affectées par les câbles, aucun consommable.
Les dispositifs Aminogram permettent d’utiliser la mesure directe ou indirecte selon le contexte. La mesure directe offre rapidité et reproductibilité, tandis que la mesure indirecte est adaptée aux mesures assises ou allongées. Cette flexibilité garantit une utilisation précise et confortable, quel que soit le patient ou l’environnement.

Single-frequency, multi-frequency and spectroscopy

BIA measures the electrical response of tissues, influenced by hydration and cell membranes. This response varies according to the frequency of the current:

  • Low frequencies (< 7 kHz) : the current remains in the extracellular medium.
  • High frequencies (> 50 kHz) : it crosses the membranes and accesses intracellular water.

It is this variation that allows distinguishing fluid compartments and improving analysis precision.

Single-frequency
  • Single frequency (50 kHz)
  • Measures total impedance and phase angle
  • Does not fully cross the cell membrane
  • Estimated fluid compartments → limited precision
Multi-frequency
  • Multiple frequencies (1–1000 kHz)
  • Differentiates intra- / extracellular water
  • Real data on fluid compartments
  • More complete models (up to 6 compartments)
Spectroscopy
  • Continuous spectrum scanning (1–1000 kHz, 54 points)
  • Fine analysis of tissue electrical response
  • Access to physiological parameters (capacitance, characteristic frequency)
  • Instant quality control (Cole-Cole curve)
Aminogram devices use multi-frequency or spectroscopic technologies, allowing for a precise and complete analysis of the body compartments.

Spectroscopy, based on the Cole-Cole model, offers a finer reading of cellular properties and real-time quality control, ensuring the reliability and consistency of each measurement.

Single-algorithm vs Multi-algorithms

The electrical parameters measured in BIA (impedance, resistance, reactance, phase angle) must be interpreted using algorithms. Two approaches coexist:

Single-algorithm
(deductive)

Relies on a unique model assuming constant body hydration (e.g. 73.3% of fat-free mass), identical for all.

The compartments are deduced from fixed coefficients.

Example:

  • Fat-free mass = Total water × 0.733
  • Proteins = Fat-free mass × 0.198

Fast method but sensitive to physiological variations (hydration, pathologies, morphotypes).

Multi-algorithms
(non-deductive)

Uses several independent models, each dedicated to a body compartment (total water, fat-free mass, fat mass, body cell mass, etc.).

Each compartment is calculated according to a specific algorithm derived from the measured bioelectrical properties.

Allows for determining the real hydration level of the fat-free mass, without arbitrary assumptions.

More consistent and precise analysis, adapted to individualized clinical monitoring.

Multi algori icon
All Aminogram devices rely on a Multi-algorithm approach, ensuring physiologically consistent estimates, better clinical precision, and compatibility with prediction equations validated in scientific literature.
This approach ensures a detailed and physiologically consistent analysis of each body compartment, a reliable evaluation of hydration and tissue composition, as well as sustainable clinical reproducibility over time. It also allows for the use of prediction equations developed, validated, and recommended in scientific literature.

Tetrapolar measurement: the reference validated by ESPEN

Tetrapolar measurement uses four distinct electrodes: two to inject current and two to measure voltage. This separation of circuits ensures a precise, stable, and reproducible measurement, without influence from skin contact.

Unlike octopolar systems, which artificially segment the body and multiply sources of error, tetrapolar measurement provides a global reading, consistent with human physiology.

Recommended by ESPEN and the Haute Autorité de Santé, it constitutes the international reference method — and the basis of all Aminogram devices.

Performance complying with scientific requirements (Gold Standard)

Our design approach relies on published data in order to guarantee accuracy consistent with reference methods. The algorithms integrated into our devices are derived from models validated in scientific literature, ensuring a reliable estimation of the various body compartments.

We have also conducted clinical evaluations confirming the accuracy of measurements for fat-free mass, fat mass, appendicular skeletal muscle mass, and bone mineral content. All results and methodological details are presented in our scientific booklet.

Need more information?

Our team is at your disposal to answer all your questions.

Solicite nuestra revista científica

Después de enviar el formulario, le enviaremos un enlace para descargar el libro electrónico.

Pongámonos en contacto

Rellena el siguiente formulario y nos pondremos en contacto contigo lo antes posible.

Demandez notre revue scientifique

Remplissez ce formulaire pour créer un compte, recevoir des mises à jour par e-mail et plus encore.

Request our scientific review

Fill out this form to create an account, receive email updates, and more.

Let’s get in touch

Fill out the form below and we’ll get back to you as soon as possible.

  • Les différents tissus ne fournissent pas les mêmes réponses au passage du courant en basse, moyenne et haute fréquence.
  • A basse fréquence, il contourne les compartiments les moins conducteurs comme les membranes cellulaires (<7kHz) permettant de connaitre l’eau extracellulaire.
  • A haute fréquence le courant passe dans les compartiments les plus conducteurs (>50kHz) permettant de connaitre l’eau totale.
  • A moyenne fréquence et plus principalement à 50 kHz on obtient la mesure optimum de la phase « PhA » (marqueur d’état cellulaire).
  • A 5 et 200 kHz il définit l’IR qui est un autre marqueur de l’état de santé de la personne (œdème, inflammation…).
  • Les fréquences à 20 et 100 kHz permettent de formaliser la courbe de Cole-Cole et d’obtenir des impédances de contrôle qui peuvent être utiles dans des études plus poussées, entre autres, sur les échanges intra/extra cellulaire.

La mesure de déphasage de la cellule ne dure que quelques microsecondes. La résistance et la distance pour acheminer, au travers des câbles, la mesure au circuit de mesure entraine un temps de réception du message qui sera fatalement additionné au temps de phase initial (DT) . Le résultat obtenu ne sera donc plus le résultat initial.

Les valeurs recueillies sous forme d’impédance, résistance, réactance, phase sont ensuite utilisées pour calculer les compartiments corporels au travers d’algorithmes ou par simples déductions mathématiques.

Les mesures peuvent selon les dispositifs être obtenues à une ou plusieurs fréquences. À une fréquence ils sont dénommés Monofréquence et à partir de 3 fréquences Multifréquences.